Control Room Design: A Collaborative Creation

Successful control buildings demand collaboration between architects, human factors engineers, interior designers, contractors, operators and the owner in an iterative environment to realize the best design.
Control Room Design: A Collaborative Creation

Best Practices and Lessons Learned from a Multi-disciplinary Perspective

Introduction

Control room design directly affects the safety of the operations, whether it’s a new build or a renovation. Regardless of the type of project, there is a unique opportunity to optimize the human performance within the system. By using a best practice approach and hiring the right multi-disciplinary team early in the design process, the road to a state-of-the-art control building is paved with technical and financial efficiencies. Although each discipline; architects, human factors engineers (HFE) and interior designers with control room experience can provide important input into the design process, experience and best practice shows us that unless these functions collaborate early and often, the design process can be disjointed and the resulting control rooms are often sub-optimized.

This paper describes a best practice approach to control room design, the importance of effective collaboration across an experienced and integrated multi-disciplinary architectural, HFE and design team as well as key issues that need to be considered.

A one-stop shop/ one team approach that includes the client, architects, human factors engineers (HFE) and interior designers with control room experience can make the design process much more streamlined rather than a struggle.
Steps to a Successful Control Room Project—New Construction or Renovation

Following a set methodology, each control room design process can deliver exceptional and tangible results. When a project need is identified a design team is formed. Who that team is can facilitate the project process. An experienced control room design team integrates lessons learned and best practice knowledge for the new facility. The design is fine-tuned throughout the design process based on feedback from many parties. As a result, the end product, the building, will have received input from operators, staff and key project stakeholders and is a multi-disciplinary collaborative creation.

The Need for a New Building or Renovation

WHY BUILD A NEW CONTROL BUILDING OR RENOVATE AN EXISTING BUILDING?

There comes a time when existing control buildings are no longer safe to occupy at the plant because of proximity to potential overpressure scenarios, or because they no longer meet current fire or building codes. They may not be ergonomically correct, or provide a human-centric work environment. There also may be a need for an automation upgrade or a refresh requiring workstations that may be larger or re-positioned to facilitate better operator communication and efficiencies. Another important consideration is the need to attract and retain the up-and-coming millennial workforce that will not want to work in 1950’s era concrete-block buildings that haven’t been appropriately upgraded since they were built. Engaging the right team can provide an introduction to the 21st century of great control building design.

Build a Great Design Team

The motivation to design a state of the art facility starts with the owner. Engaging an experienced architectural team consisting of architects, engineers, human factors engineers and interior designers all under one roof, rather than a piecemeal approach simplifies the design effort.

The roles and responsibilities of each discipline are a vital piece to a complex puzzle:

- **Architect** oversees the overarching concept and the design team (including structural, mechanical, electrical among others) and keeps the project on course

- **Human factors engineer (HFE)** ensures a human-centered approach based on ISO-11064 and industry best practices

- **Interior designer** integrates all of the disciplines together into an operator centric, ergonomic and functional environment

By hiring experts in the design of control buildings ensures the building will be designed correctly the first time, reducing human error, avoiding costly renovations, accidents and illness related to poor design. Together, the team of specialists works collaboratively to design a control building that meets the needs of the operator. Lastly, an experienced building contractor can make or break the project by providing cost and schedule control to keep the project on budget and on time, as well as risk mitigation so that the jobsite stays safe. Collaborating with the owner and architect, the contractor turns the team’s vision into a reality.
Planning and Managing the Change

Many organizations are often good at managing technical change. Some have change management systems and processes which help to ensure that technical changes are risk assessed so that fewer unforeseen consequences occur.

The same cannot generally be said for organizational changes which may not be subject to the same degree of scrutiny. Organizational changes also need to receive comprehensive planning, risk-assessment and management through the transition to reduce the risks related to major accidents.

The key success factors for managing organizational change are:

- Effective planning for the organizational changes
- Communicating and involving key site personnel
- Assessing the risks relating to the change:
 - Risks from the process of change
 - Risks from the outcome of change
- Introducing and monitoring the change as it transitions.

Specific change management preparation for staff includes:

- Providing up-front technical training to prepare for new systems
- Selecting and nurturing a highly respected project team
- Preparing leaders to lead the change in their areas and to collaborate across enterprises/departments
- Following a disciplined change process
- Sustaining new positive behaviors after implementation

As the change is implemented, senior management should be the positive example for the change behavior and reinforce those behaviors in others with positive feedback to move from resistant to resilient.

Front End Engineering and Design (FEED) Planning

Best practice includes allowing sufficient time in the Front End Engineering and Design (FEED) phase to adequately plan and design a control room integrating HFE and ISO 11064. Before the project gets too far down the road, risks and tasks are analyzed, adjacencies and future expansion needs are identified. Drawings are produced and revised until general consensus is reached. To have upper management commitment and better yet, a HFE champion and liaison from the company on board to work with the team from the beginning and throughout all phases of the project offers the most successful approach to control room design. Involving HFE early in the FEED stage to provide expertise at the beginning lays a strong foundation for the development of the successful design. Involving end users in decision making throughout the process makes for a stronger design solution and allows for their early buy-in. Designing the work environment ergonomically to suit the user is proven to reduce human error, accidents and illness, and designing it right the first time utilizing the expertise of an HFE and control room architect can save costly redesign efforts after the building is up and running. The $1:10:100 rule of thumb has been established through experience and case studies. If it costs $1 to fix a usability problem during design, it will cost $10 to fix once the system is developed, and $100 once it is operational.

“It is not the strongest of the species that survives, nor the most intelligent that survives. It is the one that is most adaptable to change.”

<table>
<thead>
<tr>
<th>Prevenion Cost</th>
<th>Correction Cost</th>
<th>Failure Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1</td>
<td>$10</td>
<td>$100</td>
</tr>
</tbody>
</table>

$1:10:100 Rule

If it costs $1 to fix a usability problem during design, it will cost $10 to fix once the system is developed, and $100 once it is operational.
The goal is to design it right the first time by eliminating safety risks and hazards like noise, fumes, glare, ineffective room layouts and furniture that lacks ergonomic considerations. Identification of any factors that may negatively affect the operator and the ability of other personnel to detect deviations, diagnose the situation and take action following a given abnormal situation are then used as a basis for design recommendations.

In renovating an existing facility, the same logic applies. The team can provide an audit to evaluate the control room referencing ISO 11064 for issues such as the following:

- Architectural / structural considerations such as columns
- Control equipment interface
- Adequate operator workspace
- Adjustability of workstation screens
- View range of the operator to see overhead screens
- Access to equipment for maintenance
- Adequate ceiling height in the control room
- Unobstructed circulation and egress
- Room for expansion
- Ease of communication
- Adequate acoustics
- Sit/stand workstations
- Adjustable seating
- Dimmability of lighting
- Glare on screens
- Finishes in the control room
- Heating, ventilation and air conditioning

Facility Siting Studies

The architect can assist with planning the best location for a new building. In addition to the regulatory compliance and legal liability protection benefits inherent in developing a facility siting risk-mitigation plan, developing a master facility plan is critical to the long term planning for a site. It not only addresses the immediate risk assessment requirements, but also addresses long-term (5 yr./10yr./15yr.) facility infrastructure improvements and asset optimization, addressing security, IT infrastructure, site circulation, and workforce optimization.

Design From the Operator-Out

The operator is key to the successful design of a control room. His/her input is invaluable throughout the entire design process. Beginning in FEED the operator should be engaged in design charrettes all the way through to 100% design and consulted for workstation design, screen graphics and the Human Machine Interface (HMI). Understanding the operator’s needs, how they interface with complex systems within a high-pressure environment, is square one, and all other design decisions flow out from that central point. The most successful control buildings have been designed with the operators involved as part of the team from the project start.

Design “Charrette”

A charrette is a workshop style meeting that is used to gather structured information from operators and stakeholders from which the building blocks of the new building take shape. The goal is to achieve consensus by the end of the 3 day process on a block plan direction. Integration of best practices in control room design is woven throughout the approach. HFE is an integral part of the control room charrette and the data gathered informs both the building, control room layout, control system and console design.
HFE focuses on what the control room needs to achieve.

The tools of the charrette are:
• Room list
• Adjacency matrix
• Room blocks
• Building block plan

Tools of the HFE aspects are:
• Role analysis which defines each primary control room user to define responsibilities and staffing profiles for different scenarios (for example steady state, plant upsets, emergency situations which can differ dramatically in how they are performed)
• Task/link analysis is used to identify the detail for each role and interactions between roles within the control room to determine the size and layout
• A list of workstation equipment is generated to determine the footprint and arrangement, based on how the equipment is used

Iterative Review Process on Planning and Design Involves Operators, Stakeholders, and the Entire Design Team

ISO 11064 recommends an iterative review process for the design of control buildings involving operators and engineers that will be working in the control room in meetings and decision making. It leads the design work towards the best possible solution, and will create buy-in and a sense of ownership in the design.

Weekly webcam type meetings for the team are the best and least expensive way to review plan development and to move the design forward. Regular discussions keep the topics fresh on the minds of the participants, especially if weekly meeting minutes record decisions and action items for individuals to report on for the next meeting.

In-person review meetings at important project milestones allow face to face communication which is the most beneficial way to discuss and agree on the details of a project that might get missed with a webcam. The nuances of verbal and non-verbal communication are more apparent with a group meeting and less information is misunderstood. There are fewer distractions to lose focus during these meetings as with a webcam since participants are all in the same room.

In these meetings, participants need to identify risks associated with design. Some examples of this are:
• Control room not designed to current ergonomic standards
• Not including enough area for future expansion
• If building is in a remote location, not having skilled workers to provide construction labor
• Poor onsite security
• Poor communication because of multi-cultural team

Conclusion & Lessons Learned

Control room projects are a success when an operator centric design approach is used by an experienced multi-disciplinary design team, and the team collaborates to optimize the control room for the client. When correctly executed, these projects will provide the best value for the money by incorporating best practices and lessons learned. The operators and staff moving into these new facilities must be a part of the design process to achieve buy-in on the design and a sense of ownership. Regular team communication and drawing reviews are key to the iterative development of a successful design. Designing the control room right the first time provides the most value of all. By incorporating all of these important elements, the final product will be a control room that the client and staff will be proud to claim as their own.

After designing more than 100 control buildings over the past 25 years the following are some of the many lessons BAW has learned from its projects:
• Allow enough time in FEED to start a control room project off right
• Workstations, small and large screen placement should be designed concurrently with the building design
• Incorporate area for future growth in the control room, rack room and infrastructure
• Communication and collaboration across the design team and with operational staff and the construction team is key to successful organizational change and successful control room design.
About BAW Architecture’s Research + Education Whitepaper Series

As a thought leader in control building architecture for the past quarter century, BAW Architecture has been actively engaged with others in the industry, and is committed to staying educated, and to educating others about best practices in control room architecture, interior design and human factors. To that end we began this ‘Research + Education Whitepaper’ series to share our knowledge in the hopes that better control rooms leads to better business resulting in minimized risk and optimized safety.

BAW has built more control room projects than any other company in the industry—more than 100 over 25 years for Chevron, ExxonMobil, Shell, Fluor, Honeywell, and many more. That’s more hands-on, earned control room expertise than any other company in the world.

We are a tight-knit, nimble group of architects, interior designers and ergonomics experts who create intelligent, innovative solutions to our clients’ control room and control building challenges. We often lead groups of 350 or more people on projects around the globe.

References and Recommended Reading

1 Keil Centre MoOC document 2016

2 Chevron El Segundo ROC PowerPoint for Honeywell Users Group 2016

About the Authors

BAW Architecture designs control rooms, control buildings and operation camps that feature a user-driven approach, and integrate architectural, interior design and human factors elements to optimize performance. Our buildings for Fortune 100 companies can be found throughout the world.

Brad Adams Walker, Architect, President and Founding Principal founded BAW Architecture in 1992. He has been blazing a trail in the control building space since 1987, but for Brad true success is measured in the lasting relationships based on mutual trust that he has forged with his team and clients—indeed, integrity is at the core of everything Brad does. His overall vision for BAW Architecture is an architecture and interior design firm that is a global leader in the design of advanced technology spaces and public places. He has completed over 100 control building projects over the past 25 years, and serves as Principal in Charge of all projects. He is a distinguished speaker who has made presentations at numerous conferences related to 24×7, mission-critical industries.

Janette Edmonds, BSc (Hons) MSc C.ErgHF FIEHF CMIOSH is the Director & Principal Consultant Ergonomist at The Keil Centre Limited and team subject matter expert on BAW Architecture projects. She holds a Masters in Ergonomics and is considered one of the world’s foremost experts in human factors engineering. Her expertise spans the oil, gas, emergency services, defense, rail, telecom and medical industries.

Published November 2016